Development of a mathematical model for predicting electrically elicited quadriceps femoris muscle forces during isovelocity knee joint motion

Autor: Wexler Anthony S; Perumal Ramu; Binder-Macleod Stuart A
Sprache: Englisch
Veröffentlicht: 2008
Quelle: Directory of Open Access Journals: DOAJ Articles
Online Zugang: http://www.jneuroengrehab.com/content/5/1/33
https://doaj.org/toc/1743-0003
doi:10.1186/1743-0003-5-33
1743-0003
https://doaj.org/article/bbb24afcb5744aa69b7ce53fe866a2cb
https://doi.org/10.1186/1743-0003-5-33
https://doaj.org/article/bbb24afcb5744aa69b7ce53fe866a2cb
Erfassungsnummer: ftdoajarticles:oai:doaj.org/article:bbb24afcb5744aa69b7ce53fe866a2cb

Zusammenfassung

Abstract Background Direct electrical activation of skeletal muscles of patients with upper motor neuron lesions can restore functional movements, such as standing or walking. Because responses to electrical stimulation are highly nonlinear and time varying, accurate control of muscles to produce functional movements is very difficult. Accurate and predictive mathematical models can facilitate the design of stimulation patterns and control strategies that will produce the desired force and motion. In the present study, we build upon our previous isometric model to capture the effects of constant angular velocity on the forces produced during electrically elicited concentric contractions of healthy human quadriceps femoris muscle. Modelling the isovelocity condition is important because it will enable us to understand how our model behaves under the relatively simple condition of constant velocity and will enable us to better understand the interactions of muscle length, limb velocity, and stimulation pattern on the force produced by the muscle. Methods An additional term was introduced into our previous isometric model to predict the force responses during constant velocity limb motion. Ten healthy subjects were recruited for the study. Using a KinCom dynamometer, isometric and isovelocity force data were collected from the human quadriceps femoris muscle in response to a wide range of stimulation frequencies and patterns. % error, linear regression trend lines, and paired t-tests were used to test how well the model predicted the experimental forces. In addition, sensitivity analysis was performed using Fourier Amplitude Sensitivity Test to obtain a measure of the sensitivity of our model's output to changes in model parameters. Results Percentage RMS errors between modelled and experimental forces determined for each subject at each stimulation pattern and velocity showed that the errors were in general less than 20%. The coefficients of determination between the measured and predicted forces show that the ...