Knee kinematics in anatomic anterior cruciate ligament reconstruction with four- and five-strand hamstring tendon autografts

Autor: Anders Sideris; Ali Hamze; Nicky Bertollo; David Broe; William Walsh
Sprache: Englisch
Veröffentlicht: 2018
Quelle: Directory of Open Access Journals: DOAJ Articles
Online Zugang: https://www.pagepress.org/journals/index.php/or/article/view/7738
https://doaj.org/toc/2035-8237
https://doaj.org/toc/2035-8164
2035-8237
2035-8164
doi:10.4081/or.2018.7738
https://doaj.org/article/5f67d1b05be84cfca670cb235b6142cc
https://doi.org/10.4081/or.2018.7738
https://doaj.org/article/5f67d1b05be84cfca670cb235b6142cc
Erfassungsnummer: ftdoajarticles:oai:doaj.org/article:5f67d1b05be84cfca670cb235b6142cc

Zusammenfassung

An alternative to the gold standard fourstrand hamstring tendon autograft for anterior cruciate ligament (ACL) reconstruction is the five-strand graft. The rationale for its use is to increase graft width to better restore the anatomical footprint and biomechanical properties of the native ACL when unable to create a four-strand graft of 8 mm in diameter. To date, there are no trials assessing the use of this wider graft and its effect on the kinematics of the knee. The aim of this study was to determine whether the use of a wider five-strand hamstring tendon autograft in ACL reconstructive surgery better replicated the kinematics of a normal non-injured knee than the gold standard four-strand graft. Forty-four patients (27 operative and 17 normal control) were recruited for this study over a 12-month period. Twenty patients underwent anterior cruciate ligament reconstruction with the four-strand hamstring tendon autograft construct and seven with the five-strand construct. All patients underwent kinematic testing using the KneeKG System (EMOVI, CA) according to a strict testing protocol. The operative group underwent testing at six (T1) and twelve (T2) weeks postoperatively. Analysis of variance was used to compare six degrees of freedom kinematic data across groups and correlations were made between kinematic data and intraoperatively measured graft width. Postoperative kinematic data revealed no statistically significant differences between graft types. At 12 weeks significant differences were seen between the four-strand and control group in the flexion/extension cycle in the preloading phase and at terminal stance. Significant correlations were seen between graft width and rotational stability at Preloading (Pearson’s r=0.415) and Maximum Internal Rotation (Femoral Width Pearson’s r=0.456 and Tibial Width Pearson’s r=0.476) at 12 weeks regardless of graft type. This study demonstrated that to achieve anatomic knee kinematics in primary ACL reconstruction in the first 12 weeks postoperatively, a technique to ...