Investigation of toppling ball flight in American football with a mechanical field-goal kicker

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Untersuchung des Ballflugs im American Football mit einem mechanischen Field Goal Kicker
Autor:Pfeifer, Chase M.; Gay, Timothy J.; Hawks, Jeff A.; Farritor, Shane M.; Burnfield, Judith M.
Erschienen in:Sports engineering
Veröffentlicht:21 (2018), 2, S. 95-102, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:1369-7072, 1460-2687
DOI:10.1007/s12283-017-0254-x
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201807005310
Quelle:BISp

Abstract des Autors

A mechanical field-goal kicking machine was used to investigate toppling ball flight in American football place-kicking, eliminating a number of uncontrollable impact variables present with a human kicker. Ball flight trajectories were recorded using a triangulation-based projectile tracking system to account for the football’s 3-dimensional position during flight as well as initial launch conditions. The football flights were described using kinematic equations relating to projectile motion including stagnant air drag and were compared to measured trajectories as well as projectile motion equations that exclude stagnant air drag. Measured football flight range deviations from the non-drag equations of projectile motion corresponded to deficits between 9 and 31%, which is described by a football toppling compound drag coefficient of 0.007 ± 0.003 kg/m. Independent variables including impact location and impact angle orientation resulted in 15 impact conditions. We found that an impact location of 5.5 cm from the bottom of the ball maximized trajectory height and distance. At the 5.5-cm impact location, alterations in impact angle produced minimal change in football trajectory, including launch angle (range = 1.96 deg), launch speed (range = 1.06 m/s), and range (range = 0.94 m).