A comparison of bilateral and unilateral drop jumping tasks in the assessment of vertical stiffness

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Ein Vergleich von bilateralen und unilateralen Tiefsprüngen bei der Beurteilung der Vertikalsteifigkeit
Autor:Maloney, Sean J.; Richards, Joanna; Fletcher, Iain M.
Erschienen in:Journal of applied biomechanics
Veröffentlicht:34 (2018), 3, S. 199-204, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:1065-8483, 1543-2688
DOI:10.1123/jab.2017-0094
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201806004485
Quelle:BISp

Abstract des Autors

This study sought to compare vertical stiffness during bilateral and unilateral drop jumping. Specifically, the intersession reliabilities and force-deformation profiles associated with each task were to be examined. On 3 occasions, following familiarization, 14 healthy males (age: 22 [2] y; height: 1.77 [0.08] m; and body mass: 73.5 [8.0] kg) performed 3 bilateral, left leg and right leg drop jumps. All jumps were performed from a drop height of 0.18 m on to a dual force plate system. Vertical stiffness was calculated as the ratio of peak ground reaction force (GRF) to the peak center of mass (COM) displacement. Unilateral drop jumping was associated with higher GRF and greater COM displacement (both Ps < .001), but vertical stiffness was not different between tasks when considering individual limbs (P = .98). A coefficient of variation of 14.6% was observed for bilateral vertical stiffness during bilateral drop jumping; values of 6.7% and 7.6% were observed for left and right limb vertical stiffness during unilateral drop jumping. These findings suggest that unilateral drop jumps may exhibit greater reliability than bilateral drop jumps while eliciting similar vertical stiffness. It is also apparent that higher GRFs during unilateral drop jumping are mitigated by increased COM displacement.