Computational biomechanics of a lumbar motion segment in pure and combined shear loads

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Computer basierte Biomechanik eines lumbalen Bewegungssegments in reiner und kombinierter Scherbeanspruchung
Autor:Schmidt, Hendrik; Bashkuev, Maxim; Dreischarf, Marcel; Rohlmann, Antonius; Duda, Georg Norbert; Wilke, Hans-Joachim; Shirazi-Adl, Aboulfazl
Erschienen in:Journal of biomechanics
Veröffentlicht:46 (2013), 14, S. 2513–2521, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:0021-9290, 1873-2380
DOI:10.1016/j.jbiomech.2013.06.038
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201503002433
Quelle:BISp
TY  - JOUR
AU  - Schmidt, Hendrik
A2  - Schmidt, Hendrik
A2  - Bashkuev, Maxim
A2  - Dreischarf, Marcel
A2  - Rohlmann, Antonius
A2  - Duda, Georg Norbert
A2  - Wilke, Hans-Joachim
A2  - Shirazi-Adl, Aboulfazl
DB  - BISp
DP  - BISp
KW  - Analyse, biomechanische
KW  - Belastung
KW  - Biomechanik
KW  - Lendenwirbelsäule
KW  - MiSpEx
KW  - Modell, biomechanisches
KW  - Rücken
KW  - Rückenschmerz
KW  - Sportmedizin
KW  - Untersuchung, vergleichende
KW  - Wirbelsäule
LA  - eng
TI  - Computational biomechanics of a lumbar motion segment in pure and combined shear loads
TT  - Computer basierte Biomechanik eines lumbalen Bewegungssegments in reiner und kombinierter Scherbeanspruchung
PY  - 2013
N2  - Anterior shear has been implicated as a risk factor in spinal injuries. A 3D nonlinear poroelastic finite element model study of a lumbar motion segment L4-L5 was performed to predict the temporal shear response under various single and combined shear loads. Effects of nucleotomy and facetectomy as well as changes in the posture and facet gap distance were analyzed as well. Comparison of the predicted anterior displacement and stiffness response with available measurements indicates satisfactory agreement. Under shear loads up to 400 N, the model predicted an almost linear displacement response. With increasing shear load and/or compressive preload, the stiffening behavior becomes evident, primarily due to stretched collagen fibers and greater facet interactions. Removal of the facets markedly decreases the segmental stiffness in shear and thus highlights the importance of the facets in resisting shear force; 61-87% of the applied shear force is transmitted through the facets depending on the magnitude of the applied shear and compressive preload. Fluid exudation during the day as well as reduced facet gap distance and a more extended posture yielded higher facet joint forces. The shear resistance of the motion segment remains almost the same with time despite the transfer of load sharing from the disc to facets. Large forces on facet joints are computed especially under greater compression preloads, shear forces and extension rotations, as time progresses and with smaller gap distances. The disc contribution on the other hand increases under larger shear loads, smaller compression preloads, flexed postures, larger facet gap distances and at transient periods. Verf.-Referat
L2  - https://dx.doi.org/10.1016/j.jbiomech.2013.06.038
DO  - 10.1016/j.jbiomech.2013.06.038
SP  - S. 2513–2521
SN  - 0021-9290
JO  - Journal of biomechanics
IS  - 14
VL  - 46
M3  - Elektronische Ressource (online)
M3  - Gedruckte Ressource
ID  - PU201503002433
ER  -