Postural control in dual-task situations : does whole-body fatigue matter?

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Haltungskontrolle in Dual-Task-Situationen : hat Ganzkörper-Müdigkeit eine Bedeutung?
Autor:Beurskens, Rainer; Haeger, Matthias; Kliegl, Reinhold; Roecker, Kai; Granacher, Urs
Erschienen in:PLoS one / Public Library of Science
Veröffentlicht:11 (2016), 1, Art.-ID e0147392; [15 S.], Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online)
Sprache:Englisch
ISSN:1932-6203
DOI:10.1371/journal.pone.0147392
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201709007139
Quelle:BISp

Abstract des Autors

Postural control is important to cope with demands of everyday life. It has been shown that both attentional demand (i.e., cognitive processing) and fatigue affect postural control in young adults. However, their combined effect is still unresolved. Therefore, we investigated the effects of fatigue on single- (ST) and dual-task (DT) postural control. Twenty young subjects (age: 23.7 ± 2.7) performed an all-out incremental treadmill protocol. After each completed stage, one-legged-stance performance on a force platform under ST (i.e., one-legged-stance only) and DT conditions (i.e., one-legged-stance while subtracting serial 3s) was registered. On a second test day, subjects conducted the same balance tasks for the control condition (i.e., non-fatigued). Results showed that heart rate, lactate, and ventilation increased following fatigue (all p < 0.001; d = 4.2–21). Postural sway and sway velocity increased during DT compared to ST (all p < 0.001; d = 1.9–2.0) and fatigued compared to non-fatigued condition (all p < 0.001; d = 3.3–4.2). In addition, postural control deteriorated with each completed stage during the treadmill protocol (all p < 0.01; d = 1.9–3.3). The addition of an attention-demanding interference task did not further impede one-legged-stance performance. Although both additional attentional demand and physical fatigue affected postural control in healthy young adults, there was no evidence for an overadditive effect (i.e., fatigue-related performance decrements in postural control were similar under ST and DT conditions). Thus, attentional resources were sufficient to cope with the DT situations in the fatigue condition of this experiment.