The influence of lower extremity lean mass on landing biomechanics during prolonged exercise

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Der Einfluss der fettfreien Körpermasse der unteren Extremität auf die Biomechanik der Landung bei längerem Training
Autor:Montgomery, Melissa M.; Tritsch, Amanda J.; Cone, John R.; Schmitz, Randy J.; Henson, Robert A.; Shultz, Sandra J.
Erschienen in:Journal of athletic training
Veröffentlicht:52 (2017), 8, S. 738-746, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:1062-6050, 0160-8320, 1938-162X
DOI:10.4085/1062-6050-52.5.03
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201708006879
Quelle:BISp

Abstract

Context: The extent to which lower extremity lean mass (LELM) relative to total body mass influences one's ability to maintain safe landing biomechanics during prolonged exercise when injury incidence increases is unknown. Objectives: To examine the influence of LELM on (1) pre-exercise lower extremity biomechanics and (2) changes in biomechanics during an intermittent exercise protocol (IEP) and (3) determine whether these relationships differ by sex. We hypothesized that less LELM would predict higher-risk baseline biomechanics and greater changes toward higher-risk biomechanics during the IEP. Design: Cohort study. Setting: Controlled laboratory. Patients or Other Participants: A total of 59 athletes (30 men: age = 20.3 ± 2.0 years, height = 1.79 ± 0.05 m, mass = 75.2 ± 7.2 kg; 29 women: age = 20.6 ± 2.3 years, height = 1.67 ± 0.08 m, mass = 61.8 ± 9.0 kg) participated. Intervention(s): Before completing an individualized 90-minute IEP designed to mimic a soccer match, participants underwent dual-energy x-ray absorptiometry testing for LELM. Main Outcome Measure(s): Three-dimensional lower extremity biomechanics were measured during drop-jump landings before the IEP and every 15 minutes thereafter. A previously reported principal components analysis reduced 40 biomechanical variables to 11 factors. Hierarchical linear modeling analysis then determined the extent to which sex and LELM predicted the baseline score and the change in each factor over time. Results: Lower extremity lean mass did not influence baseline biomechanics or the changes over time. Sex influenced the biomechanical factor representing knee loading at baseline (P = .04) and the changes in the anterior cruciate ligament–loading factor over time (P = .03). The LELM had an additional influence only on women who possessed less LELM (P = .03 and .02, respectively). Conclusions: Lower extremity lean mass influenced knee loading during landing in women but not in men. The effect appeared to be stronger in women with less LELM. Continually decreasing knee loading over time may reflect a strategy chosen to avoid injury. A minimal threshold of LELM may be needed to safely perform landing maneuvers, especially during prolonged exercise when the injury risk increases.