The Kansas squat test modality comparison : free weights vs. Smith machine

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Ein Vergleich der Durchführung des Kansas-Kniebeugetests : Hanteln im Gegensatz zur Smith-Maschine
Autor:Luebbers, Paul E.; Fry, Andrew C.
Erschienen in:Journal of strength and conditioning research
Veröffentlicht:30 (2016), 8, S. 2186-2193
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:1064-8011, 1533-4287
DOI:10.1519/JSC.0000000000001404
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201608005499
Quelle:BISp

Abstract des Autors

Standardized methods of testing power are instrumental in planning and implementing training regimens for many athletes, and also in tracking training adaptations. Previous work has demonstrated that the Kansas squat test (KST) is a valid test for measuring indices of mean and peak power when compared with the Wingate anaerobic cycle test. Although the KST was designed for use with a Smith machine (SM), many power athletes use free weights for training. The purpose of this study was to determine the feasibility of using free weights (FW) for the KST by comparing it with the SM modality. Twenty-three track and field athletes participated (mean ± SD; weight, 69.7 ± 10.6 kg; age, 20.1 ± 1.1 years) in this study. Each completed familiarization sessions with the FW and SM modalities before data collection. A 1-repetition maximum squat was also determined for both the FW and SM. Correlation coefficients indicated significant relationships between the FW KST and SM KST on measures of peak test power (r = 0.955; p < 0.01) and mean test power (r = 0.959; p < 0.01) but not for relative fatigue (r = −0.198; p > 0.05) or posttest lactate (r = 0.109; p > 0.05). Paired samples t-tests indicated that the FW KST resulted in significantly higher measures of peak power and mean power (p ≤ 0.01), although no differences were observed for relative fatigue or lactate (p > 0.05). These data indicate that the FW KST is a valid and feasible alternative to the SM KST in measuring peak and mean power.