Effects of three types of exercise interventions on healthy old adults’ gait speed : a systematic review and meta-analysis

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Auswirkungen dreier Arten von Trainingsinterventionen auf die Gehgeschwindigkeit gesunder älterer Erwachsener : eine systematische Übersicht und Metaanalyse
Autor:Hortobágyi, Tibor; Lesinski, Melanie; Gäbler, Martijn; VanSwearingen, Jessie M.; Malatesta, Davide; Granacher, Urs
Erschienen in:Sports medicine
Veröffentlicht:45 (2015), 12 (Exercise to improve mobility in healthy aging), S. 1627-1643, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:0112-1642, 1179-2035
DOI:10.1007/s40279-015-0371-2
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201601000214
Quelle:BISp

Abstract

Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults’ habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included ‘Resistance training’, ‘power training’, ‘coordination training’, ‘multimodal training’, and ‘gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age ≥65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 ± 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4–82.7]; body mass 69.9 ± 4.9 kg, height 1.64 ± 0.05 m, body mass index 26.4 ± 1.9 kg/m2, and gait speed 1.22 ± 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (±0.12) or 8.4 % (±9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 %; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 %; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 %, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset. Verf.-Referat