High-intensity running and plantar-flexor fatigability and plantar-pressure distribution in adolescent runners

Saved in:
Bibliographic Details
Title translated into German:Hochintensives Laufen und die Ermüdung der Fußsohlenmuskulatur und Druckverteilung unter der Fußsohle bei jugendlichen Läufern
Author:Fourchet, François; Kelly, Luke; Horobeanu, Cosmin; Loepelt, Heiko; Taïar, Redha; Millet, Grégoire
Published in:Journal of athletic training
Published:50 (2015), 2, S. 117-125, Lit.
Format: Publications (Database SPOLIT)
Publication Type: Journal article
Media type: Electronic resource (online) Print resource
ISSN:1062-6050, 0160-8320, 1938-162X
Online Access:
Identification number:PU201504002930


Context: Fatigue-induced alterations in foot mechanics may lead to structural overload and injury. Objectives: To investigate how a high-intensity running exercise to exhaustion modifies ankle plantar-flexor and dorsiflexor strength and fatigability, as well as plantar-pressure distribution in adolescent runners. Design: Controlled laboratory study. Setting: Academy research laboratory. Patients or Other Participants: Eleven male adolescent distance runners (age = 16.9 ± 2.0 years, height = 170.6 ± 10.9 cm, mass = 54.6 ± 8.6 kg) were tested. Intervention(s): All participants performed an exhausting run on a treadmill. An isokinetic plantar-flexor and dorsiflexor maximal-strength test and a fatigue test were performed before and after the exhausting run. Plantar-pressure distribution was assessed at the beginning and end of the exhausting run. Main Outcome Measure(s): We recorded plantar-flexor and dorsiflexor peak torques and calculated the fatigue index. Plantar-pressure measurements were recorded 1 minute after the start of the run and before exhaustion. Plantar variables (ie, mean area, contact time, mean pressure, relative load) were determined for 9 selected regions. Results: Isokinetic peak torques were similar before and after the run in both muscle groups, whereas the fatigue index increased in plantar flexion (28.1%; P = .01) but not in dorsiflexion. For the whole foot, mean pressure decreased from 1 minute to the end (−3.4%; P = .003); however, mean area (9.5%; P = .005) and relative load (7.2%; P = .009) increased under the medial midfoot, and contact time increased under the central forefoot (8.3%; P = .01) and the lesser toes (8.9%; P = .008). Conclusions: Fatigue resistance in the plantar flexors declined after a high-intensity running bout performed by adolescent male distance runners. This phenomenon was associated with increased loading under the medial arch in the fatigued state but without any excessive pronation. Verf.-Referat