A predictive model to estimate knee-abduction moment : implications for development of a clinically applicable patellofemoral pain screening tool in female athletes

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Ein Vorhersagemodell für die Abschätzung des Knieabduktionsmoments : Implikationen für die Entwicklung eines klinisch anwendbaren Screeninginstruments bei Sportlerinnen mit patellofemoralem Schmerz
Autor:Myer, Gregory D.; Ford, Kevin R.; Barber Foss, Kim D.; Rauh, Mitchell J.; Paterno, Mark V.; Hewett, Timothy E.
Erschienen in:Journal of athletic training
Veröffentlicht:49 (2014), 3, S. 389-398, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:1062-6050, 0160-8320, 1938-162X
DOI:10.4085/1062-6050-49.2.17
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201407007215
Quelle:BISp

Abstract

Context: Prospective measures of high external knee-abduction moment (KAM) during landing identify female athletes at increased risk of patellofemoral pain (PFP). A clinically applicable screening protocol is needed. Objective: To identify biomechanical laboratory measures that would accurately quantify KAM loads during landing that predict increased risk of PFP in female athletes and clinical correlates to laboratory-based measures of increased KAM status for use in a clinical PFP injury-risk prediction algorithm. We hypothesized that we could identify clinical correlates that combine to accurately determine increased KAM associated with an increased risk of developing PFP. Design: Descriptive laboratory study. Setting: Biomechanical laboratory. Patients or Other Participants: Adolescent female basketball and soccer players (n = 698) from a single-county public school district. Main Outcome Measure(s): We conducted tests of anthropometrics, maturation, laxity, flexibility, strength, and landing biomechanics before each competitive season. Pearson correlation and linear and logistic regression modeling were used to examine high KAM (>15.4 Nm) compared with normal KAM as a surrogate for PFP injury risk. Results: The multivariable logistic regression model that used the variables peak knee-abduction angle, center-of-mass height, and hip rotational moment excursion predicted KAM associated with PFP risk (>15.4 NM of KAM) with 92% sensitivity and 74% specificity and a C statistic of 0.93. The multivariate linear regression model that included the same predictors accounted for 70% of the variance in KAM. We identified clinical correlates to laboratory measures that combined to predict high KAM with 92% sensitivity and 47% specificity. The clinical prediction algorithm, including knee-valgus motion (odds ratio [OR] = 1.46, 95% confidence interval [CI] = 1.31, 1.63), center-of-mass height (OR = 1.21, 95% CI = 1.15, 1.26), and hamstrings strength/body fat percentage (OR = 1.80, 95% CI = 1.02, 3.16) predicted high KAM with a C statistic of 0.80. Conclusions: Clinical correlates to laboratory-measured biomechanics associated with an increased risk of PFP yielded a highly sensitive model to predict increased KAM status. This screening algorithm consisting of a standard camcorder, physician scale for mass, and handheld dynamometer may be used to identify athletes at increased risk of PFP. Verf.-Referat