An isovelocity dynamometer method to determine monoarticular and biarticular muscle parameters

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Eine Dynamometermethode mit gleichbleibender Geschwindigkeit zur Bestimmung von mono- und biartikulären Muskelparametern
Autor:Conceição, Filipe Almeida da; King, Mark A.; Yeadon, Maurice R.; Lewis, Martin G.C.; Forrester, Stephanie E.
Erschienen in:Journal of applied biomechanics
Veröffentlicht:28 (2012), 6, S. 751–759, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Gedruckte Ressource Elektronische Ressource (Datenträger)
Sprache:Englisch
ISSN:1065-8483, 1543-2688
DOI:10.1123/jab.28.6.751
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201304002662
Quelle:BISp

Abstract

This study aimed to determine whether subject-specific individual muscle models for the ankle plantar flexors could be obtained from single joint isometric and isovelocity maximum torque measurements in combination with a model of plantar flexion. Maximum plantar flexion torque measurements were taken on one subject at six knee angles spanning full flexion to full extension. A planar three-segment (foot, shank and thigh), two-muscle (soleus and gastrocnemius) model of plantar flexion was developed. Seven parameters per muscle were determined by minimizing a weighted root mean square difference (wRMSD) between the model output and the experimental torque data. Valid individual muscle models were obtained using experimental data from only two knee angles giving a wRMSD score of 16 N·m, with values ranging from 11 to 17 N·m for each of the six knee angles. The robustness of the methodology was confirmed through repeating the optimization with perturbed experimental torques (±20%) and segment lengths (±10%) resulting in wRMSD scores of between 13 and 20 N·m. Hence, good representations of maximum torque can be achieved from subject-specific individual muscle models determined from single joint maximum torque measurements. The proposed methodology could be applied to muscle-driven models of human movement with the potential to improve their validity. Verf.-Referat