Combining epidemiology and biomechanics in sports injury prevention research : a new approach for selecting suitable controls

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Kombination von Epidemiologie und Biomechanik in der Forschung zur Prävention von Sportverletzungen : ein neuer Versuch zur Selektion passender Kontrollgruppen
Autor:Finch, Caroline F.; Ullah, Shahid; McIntosh, Andrew S.
Erschienen in:Sports medicine
Veröffentlicht:41 (2011), 1, S. 59-72, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Gedruckte Ressource Elektronische Ressource (online)
Sprache:Englisch
ISSN:0112-1642, 1179-2035
DOI:10.2165/11537260-000000000-00000
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201208005547
Quelle:BISp

Abstract

Several important methodological issues need to be considered when designing sports injury case-control studies. Major design goals for case-control studies include the accounting for prior injury risk exposure, and optimal definitions of both cases and suitable controls are needed to ensure this. This article reviews methodological aspects of published sports injury case-control studies, particularly with regard to the selection of controls. It argues for a new approach towards selecting controls for case-control studies that draws on an interface between epidemiological and biomechanical concepts. A review was conducted to identify sport injury case-control studies published in the peer-review literature during 1985–2008. Overall, 32 articles were identified, of which the majority related to upper or lower extremity injuries. Matching considerations were used for control selection in 16 studies. Specific mention of application of biomechanical principles in the selection of appropriate controls was absent from all studies, including those purporting to evaluate the benefits of personal protective equipment to protect against impact injury. This is a problem because it could lead to biased conclusions, as cases and controls are not fully comparable in terms of similar biomechanical impact profiles relating to the injury incident, such as site of the impact on the body. The strength of the conclusions drawn from case-control studies, and the extent to which results can be generalized, is directly influenced by the definition and recruitment of cases and appropriate controls. Future studies should consider the interface between epidemiological and biomechanical concepts when choosing appropriate controls to ensure that proper adjustment of prior exposure to injury risk is made. To provide necessary guidance for the optimal selection of controls in case-control studies of interventions to prevent sports-related impact injury, this review outlines a new case-control selection strategy that reflects the importance of biomechanical considerations, which ensures that controls are selected based on the presence of the same global injury mechanism as the cases. To summarize, the general biomechanical principles that should apply to the selection of controls in future case-control studies are as follows: (i) each control must have been exposed to the same global injury mechanism as the case, (e.g. head impact, fall onto outstretched arm); and (ii) intrinsic (individual) factors (e.g. age, sex, skill level) that might modify the person's response to the relevant biomechanical loads are adjusted when either selecting the controls or are in the analysis phase. The same considerations for control selection apply to other study designs such as matched cohort studies or case-crossover studies. Verf.-Referat