Linear models and effect magnitudes for research, clinical and practical applications

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Lineare Modelle und Effektstärken für die Forschung, klinische und praktische Anwendung
Autor:Hopkins, Will G.
Erschienen in:Sportscience
Veröffentlicht:14 (2010), S. 49-57, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:1174-9210, 1174-0698
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201009007198
Quelle:BISp
id PU201009007198
bisp-collection db
format Literatur
last_indexed 2010-09-29T17:06:24Z
first_indexed 2010-09-28T13:53:29Z
publication_source BISp
subformat Zeitschriftenartikel
hierarchy_top_id JO00000100377
hierarchy_parent_id JOY20100100377
hierarchy_top_title Sportscience
hierarchy_parent_title Sportscience, 2010
is_hierarchy_id PU201009007198
is_hierarchy_title Linear models and effect magnitudes for research, clinical and practical applications
hierarchy_sequence 0049
recordtype bisparticle
publishDate 2010
publishDate_facet 2010
language eng
title Linear models and effect magnitudes for research, clinical and practical applications
spellingShingle Linear models and effect magnitudes for research, clinical and practical applications
Berechnung
Datenanalyse
Datenauswertung
Formel
Forschung
Forschung, empirische
Korrelation
Korrelationsanalyse
Modell
Modell, mathematisches
Sportwissenschaft
Statistik
Stichprobe
Wissenschaft
title_sort linear models and effect magnitudes for research clinical and practical applications
title_short Linear models and effect magnitudes for research, clinical and practical applications
title_alt Lineare Modelle und Effektstärken für die Forschung, klinische und praktische Anwendung
title_alt_lang deu
media_type Elektronische Ressource (online)
Gedruckte Ressource
city Santa Barbara (Cal.)
abstract Effects are relationships between variables. The magnitude of an effect has an essential role in sample-size estimation, statistical inference, and clinical or practical decisions about utility of the effect. Virtually every effect in research, clinical and practical settings arises from a linear model, an equation in which a dependent variable equals a sum of predictor variables and/or their products. Linear models allow for the effect of one predictor to be adjusted for the effects of other predictors and for the modeling of non-linearity via polynomials. Effects and models used to estimate them depend on the nature of the dependent variable (continuous, count, nominal) and the predictor variables (numeric, nominal). A continuous dependent gives rise to a difference in a mean with a nominal predictor and a slope or correlation with a numeric predictor. Default magnitude thresholds for difference in a mean come from standardization (dividing by the between-subject standard deviation): 0.2, 0.6, 1.2, 2.0 and 4.0 for small, moderate, large, very large and extremely large. The same thresholds apply to a slope, provided the slope is evaluated as the difference for 2 SD of the predictor. Thresholds for correlations are 0.1, 0.3, 0.5, 0.7 and 0.9. Many effects and errors are uniform across the range of the dependent variable when expressed as percents or factors, and these should be estimated via log transformation. Non-uniformity of error arising from repeated measurement or from different subject groups should be addressed via within-subject modeling or mixed modeling, which also provide estimates of individual responses to treatments. Effects on nominal variables and counts are analyzed with various generalized linear models, where the dependent is the log of either the odds of a classification, the hazard (incidence rate) of an event, or the mean count. The effect is estimated initially as a factor representing a ratio between two groups (or per unit or per 2 SD of a numeric predictor) of either odds of a classification, hazards of an event, counts, or count rates. Effects involving common classifications or events can be converted to differences in percent risk and interpreted with magnitude thresholds of 10, 30, 50, 70 and 90. Thresholds for common events can also be derived from standardization of log of time to the event. Both sets of thresholds are similar and correspond to hazard ratios of 1.3, 2.3, 4.5, 10 and 100. For counts and rare events, a consideration of proportions attributable to an effect gives rise to ratio thresholds for counts, hazards, risks or odds of 1.1, 1.4, 2.0, 3.3, and 10. Proportional hazards regression is an advanced form of linear modeling for use with events when hazards change with time but their ratio is constant. Verf.-Referat
abstract_lang eng
abstract_type abstract
author2 Hopkins, Will G.
author_facet Hopkins, Will G.
author2-role Autor
author2-authorityid P75772
author_author_facet Hopkins, Will G.
author2-synonym
author2_hierarchy_facet 0/Autor/
1/Autor/Hopkins, Will G./
url http://www.sportsci.org/2010/wghlinmod.pdf
url-type fulltext
url-free 1
free_access 1
issn 1174-9210
1174-0698
spelling 1174-9210
1174-0698
Berechnung
Datenanalyse
Datenauswertung
Formel
Forschung
Forschung, empirische
Korrelation
Korrelationsanalyse
Modell
Modell, mathematisches
Sportwissenschaft
Statistik
Stichprobe
Wissenschaft
calculation
correlation
correlation analysis
data analysis
data evaluation
empirical research
formula
mathematical model
model
research
sample
science
sport science
statistics
Theorie der Körpererziehung
Theorie der Leibesübungen
Theorie der Leibeserziehung
Forschungsprozess
Teamforschung
Aufbereitung, statistische
Datenverarbeitung
Daten, statistische
Schätzung, statistische
Schätzungsverfahren, statistisches
Schätzverfahren
Korrelationskoeffizient
Modellierung
Modell, kognitives
Modellbildung
exercise science
sport and exercise science
computation
Linear models and effect magnitudes for research, clinical and practical applications
PU201009007198
201009007198
location_hierarchy_facet 0/USA/
1/USA/Kalifornien/
topic Berechnung
Datenanalyse
Datenauswertung
Formel
Forschung
Forschung, empirische
Korrelation
Korrelationsanalyse
Modell
Modell, mathematisches
Sportwissenschaft
Statistik
Stichprobe
Wissenschaft
topic_facet Berechnung
Datenanalyse
Datenauswertung
Formel
Forschung
Forschung, empirische
Korrelation
Korrelationsanalyse
Modell
Modell, mathematisches
Sportwissenschaft
Statistik
Stichprobe
Wissenschaft
topic_en calculation
correlation
correlation analysis
data analysis
data evaluation
empirical research
formula
mathematical model
model
research
sample
science
sport science
statistics
topic_en_facet calculation
correlation
correlation analysis
data analysis
data evaluation
empirical research
formula
mathematical model
model
research
sample
science
sport science
statistics
synonym Theorie der Körpererziehung
Theorie der Leibesübungen
Theorie der Leibeserziehung
Forschungsprozess
Teamforschung
Aufbereitung, statistische
Datenverarbeitung
Daten, statistische
Schätzung, statistische
Schätzungsverfahren, statistisches
Schätzverfahren
Korrelationskoeffizient
Modellierung
Modell, kognitives
Modellbildung
synonym_en exercise science
sport and exercise science
computation
journal_facet Sportscience
container_title Sportscience
container_volume 14
container_start_page S. 49-57
has_references 1
institution BISp
journal_fac JO00000100377
journal_year 2010
_version_ 1791512903538442240
score 13,546162