Gait and quiet-stance performance among adolescents after concussion-symptom resolution

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Gang- und Standleistung bei Jugendlichen im Zustand nach Gehirnerschütterung
Autor:Berkner, Justin; Meehan, William P.; Master, Christina L.; Howell, David R.
Erschienen in:Journal of athletic training
Veröffentlicht:52 (2017), 12, S. 1089-1095, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:1062-6050, 0160-8320, 1938-162X
DOI:10.4085/1062-6050-52.11.23
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201802001166
Quelle:BISp

Abstract

Context: Concussions affect a large number of US athletes each year. Returning an athlete to activity once self-reported symptoms have resolved can be problematic if unrecognized neurocognitive and balance deficits persist. Pairing cognitive and motor tasks or cognitive and quiet-stance tasks may allow clinicians to detect and monitor these changes postconcussion. Objective: To prospectively examine adolescent athletes' gait and quiet-stance performance while concurrently completing a cognitive task acutely after concussion and after symptom resolution. Design: Case-control study. Setting: Sport concussion clinic. Patients or Other Participants: Thirty-seven athletes (age = 16.2 ± 3.1 years; 54% female) were diagnosed with a concussion, and their performance was compared with that of a group of 44 uninjured control participants (age = 15.0 ± 2.0 years; 57% female). Intervention: Participants diagnosed with a concussion completed a symptom inventory and single- and dual-task gait and quiet-stance evaluations within 21 days of injury and then again after symptom resolution. Gait and postural-control measurements were quantified using an inertial sensor system and analyzed using multivariate analyses of covariance. Main Outcome Measure(s): Post-Concussion Symptom Scale, single-task and dual-task gait measures, quiet-stance measures, and cognitive task performance. Results: At the initial post injury examination, single-task gait stride length (1.16 ± 0.14 versus 1.25 ± 0.13 m, P = .003) and dual-task gait stride length (1.02 ± 0.13 m versus 1.10 ± 0.13 m, P = .011) for the concussion group compared with the control group, respectively, were shorter. After symptom resolution, no single-task gait differences were found, but the concussion group demonstrated slower gait velocity (0.78 ± 0.15 m/s versus 0.92 ± 0.14 m/s, P = .005), lower cadence (92.5 ± 12.2 steps/min versus 99.3 ± 7.8 steps/min, P < .001), and a shorter stride length (0.99 ± 0.15 m versus 1.10 ± 0.13 m, P = .003) during dual-task gait than the control group. No between-groups differences were detected during quiet stance at either time point. Conclusions: Acutely after concussion, single-task and dual-task stride-length alterations were present among youth athletes compared with a control group. Although single-task gait alterations were not detected after symptom resolution, dual-task gait differences persisted, suggesting that dual-task gait alterations may persist longer after concussion than single-task gait or objective quiet-stance alterations. Dual-task gait assessments may, therefore, be a useful component in monitoring concussion recovery after symptom resolution.