Simultaneous quantification of major cannabinoids and metabolites in human urine and plasma by HPLC-MS/MS and enzyme-alkaline hydrolysis

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Simultane Quantifizierung der Hauptkannabinoide und -metaboliten in menschlichem Urin und Plasma durch HPLC-MS/MS und enzymantische Alkalische Hydrolyse
Autor:Aizpurua-Olaizola, Oier; Zarandona, Iratxe; Ortiz, Laura; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz
Erschienen in:Drug testing and analysis
Veröffentlicht:9 (2017), 3/4 (Addressing the challenges in forensic drug chemistry), S. 626-633, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:1942-7603, 1942-7611
DOI:10.1002/dta.1998
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201705003837
Quelle:BISp

Abstract des Autors

A high performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) method for simultaneous quantification of Δ9-tetrahydrocannabinol (THC), its two metabolites 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), and four additional cannabinoids (cannabidiol (CBD), cannabigerol (CBG), tetrahydrocannabivarin (THCV), and cannabinol (CBN)) in 1 mL of human urine and plasma was developed and validated. The hydrolysis process was studied to ensure complete hydrolysis of glucuronide conjugates and the extraction of a total amount of analytes. Initially, urine and plasma blank samples were spiked with THC-COOH-glucuronide and THC-glucuronide, and four different pretreatment methods were compared: hydrolysis-free method, enzymatic hydrolysis with Escherichia Coli β-glucuronidase, alkaline hydrolysis with 10 M NaOH, and enzyme-alkaline tandem hydrolysis. The last approach assured the maximum efficiencies (close to 100%) for both urine and plasma matrices. Regarding the figures of merit, the limits of detection were below 1 ng/mL for all analytes, the accuracy ranged from 84% to 115%, and both within-day and between-day precision were lower than 12%. Finally, the method was successfully applied to real urine and plasma samples from cannabis users.