Effectiveness of saliva and fingerprints as alternative specimens to urine and blood in forensic drug testing

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Effektivität von Speichel und Fingerabdrücken als Alternativen zu Urin und Blut in der forensischen Drogenanalyse
Autor:Kuwayama, Kenji; Miyaguchi, Hajime; Yamamuro, Tadashi; Tsujikawa, Kenji; Kanamori, Tatsuyuki; Iwata, Yuko T.; Inoue, Hiroyuki
Erschienen in:Drug testing and analysis
Veröffentlicht:8 (2016), 7/8, S. 644-651, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:1942-7603, 1942-7611
DOI:10.1002/dta.1831
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201609006669
Quelle:BISp

Abstract des Autors

In forensic drug testing, it is important to immediately take biological specimens from suspects and victims to prove their drug intake. We evaluated the effectiveness of saliva and fingerprints as alternative specimens to urine and blood in terms of ease of sampling, drug detection sensitivity, and drug detection periods for each specimen type. After four commercially available pharmaceutical products were administered to healthy subjects, each in a single dose, their urine, blood, saliva, and fingerprints were taken at predetermined sampling times over approximately four weeks. Fourteen analytes (the administered drugs and their main metabolites) were extracted from each specimen using simple pretreatments, such as dilution and deproteinization, and were analyzed using liquid chromatography/mass spectrometry (LC/MS). Most of the analytes were detected in saliva and fingerprints, as well as in urine and blood. The time-courses of drug concentrations were similar between urine and fingerprints, and between blood and saliva. Compared to the other compounds, the acidic compounds, for example ibuprofen, acetylsalicylic acid, were more difficult to detect in all specimens. Acetaminophen, dihydrocodeine, and methylephedrine were detected in fingerprints at later sampling times than in urine. However, a relationship between the drug structures and their detection periods in each specimen was not found. Saliva and fingerprints could be easily sampled on site without using special techniques or facilities. In addition, fingerprints could be immediately analyzed after simple and rapid treatment. In cases where it would be difficult to immediately obtain urine and blood, saliva and fingerprints could be effective alternative specimens for drug testing.