Biomechanical energetic analysis of technique during learning the longswing on the high bar

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Biomechanische Energieanalyse der Technik während der Lernphase des Langhangs am Barren
Autor:Williams, Genevieve Kate Roscoe; Irwin, Gareth; Kerwin, David George; Newell, Karl Maxim
Erschienen in:Journal of sports sciences
Veröffentlicht:33 (2015), 13, S. 1376-1387, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Elektronische Ressource (online) Gedruckte Ressource
Sprache:Englisch
ISSN:0264-0414, 1466-447X
DOI:10.1080/02640414.2014.990484
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201508006362
Quelle:BISp

Abstract

Biomechanical energetic analysis of technique can be performed to identify limits or constraints to performance outcome at the level of joint work, and to assess the mechanical efficiency of techniques. The aim of this study was to investigate the biomechanical energetic processes during learning the longswing on the high bar. Twelve male, novice participants took part in a training study. Kinematic and kinetics data were collected during swing attempts in eight weekly testing sessions. Inverse dynamics analysis was performed from known zero forces at the toes. Joint work, total energy, and bar energy were calculated. Biomechanical constraints to action, that is, limits to novice performance, were identified as “total work” and “shoulder work”. The most biomechanically efficient technique was associated with an onset of the hip functional phase and joint work that occurred between 10–45° before the bottom of the swing. The learning of gross motor skills is realised through the establishment of a set of techniques with task specific biomechanical constraints. Knowledge of the biomechanical constraints to action associated with more effective and efficient techniques will be useful for both assessing learning and establishing effective learning interventions. Verf.-Referat