Promoting training adaptations through nutritional interventions

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Begünstigung von Trainingsreizen durch Ernährungsumstellung
Autor:Hawley, John A.; Tipton, Kevin D.; Millard-Stafford, Mindy L.
Erschienen in:Journal of sports sciences
Veröffentlicht:24 (2006), 7, S. 709-721, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Gedruckte Ressource
Sprache:Englisch
ISSN:0264-0414, 1466-447X
DOI:10.1080/02640410500482727
Schlagworte:
Online Zugang:
Erfassungsnummer:PU201311008110
Quelle:BISp

Abstract

Training and nutrition are highly interrelated in that optimal adaptation to the demands of repeated training sessions typically requires a diet that can sustain muscle energy reserves. As nutrient stores (i.e. muscle and liver glycogen) play a predominant role in the performance of prolonged, intense, intermittent exercise typical of the patterns of soccer match-play, and in the replenishment of energy reserves for subsequent training sessions, the extent to which acutely altering substrate availability might modify the training impulse has been a key research area among exercise physiologists and sport nutritionists for several decades. Although the major perturbations to cellular homeostasis and muscle substrate stores occur during exercise, the activation of several major signalling pathways important for chronic training adaptations take place during the first few hours of recovery, returning to baseline values within 24 h after exercise. This has led to the paradigm that many chronic training adaptations are generated by the cumulative effects of the transient events that occur during recovery from each (acute) exercise bout. Evidence is accumulating that nutrient supplementation can serve as a potent modulator of many of the acute responses to both endurance and resistance training. In this article, we review the molecular and cellular events that occur in skeletal muscle during exercise and subsequent recovery, and the potential for nutrient supplementation (e.g. carbohydrate, fat, protein) to affect many of the adaptive responses to training. Verf.-Referat