Effect of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation and pH during intermittent maximal exercise

Gespeichert in:
Bibliographische Detailangaben
Deutscher übersetzter Titel:Die Wirkung der Kreatinzufuhr auf die Phosphokreatinresynthese, anorganische Phosphatbildung und des pH-Werts während intermittierender Belastung
Autor:Yquel, R.J.; Arsac, L.M.; Thiaudière, E. ; Canioni, P.; Manier, G.
Erschienen in:Journal of sports sciences
Veröffentlicht:20 (2002), 5, S. 427-437, Lit.
Format: Literatur (SPOLIT)
Publikationstyp: Zeitschriftenartikel
Medienart: Gedruckte Ressource
Sprache:Englisch
ISSN:0264-0414, 1466-447X
Schlagworte:
Online Zugang:
Erfassungsnummer:PU200911005901
Quelle:BISp

Abstract

In this study, we examined the effect of creatine ingestion on muscle power output, muscle phosphocreatine resynthesis, inorganic phosphate and pH during repeated brief bouts of maximal exercise. Nine healthy males performed maximal plantar flexion before and after creatine ingestion (20 g/day for 6 days). The experimental protocol consisted of five 8 s bouts (bouts 1-5) interspersed with 30 s recovery, followed by bouts 6 (8 s) and 7 (16 s) separated by 1 and 2 min, respectively. Muscle phosphocreatine, inorganic phosphate and pH were estimated every 16 s by 31 P magnetic resonance spectroscopy. After creatine ingestion, muscle power output increased by ~5% (P<0.05) from bouts 3 to 7 and muscle phosphocreatine resynthesis increased (P<0.05) during 10 min recovery. The higher phosphocreatine concentration observed after only 30 s of recovery was accompanied by lower inorganic phosphate accumulation and higher pH. Strong correlations were found between exercise power restoration and the corresponding pre-exercise phosphocreatine and inorganic phosphate concentrations and muscle pH after creatine ingestion. The better maintenance of muscle power output observed after creatine ingestion was attributed to a higher rate of phosphocreatine resynthesis, lower accumulation of inorganic phosphate and higher pH. Verf.-Referat